

NIII.

PTFE Seal Guide

for reciprocating, rotating, static, and complex integrated applications

The formula for success:

- Materials
- Design Engineering
- Application Know-How
- Manufacturing Technologies

Certified ISO9001/AS9100

ABOUT US

Rubbercraft (RCC) offers a complete capability for reciprocating, rotating, and static applications. RCC's emphasis has always been to provide its customers with the best possible solution at the most competitive price, offering tremendous value, quality, and reliability. With excellent material science, design engineering, application experience, and precision manufacturing techniques at its core, RCC offers engineers a complete resource for sealing requirements.

Rubbercraft is ISO 9001 and AS 9100 certified and can offer its customers engineered solutions for Seals, Gaskets, and Vacuum Components.

This brochure focuses on PTFE seal products. RCC offers a wide variety of sealing solutions depending on operating conditions. PTFE products are typically specified where chemical compatibility, extreme temperatures, and low friction are primary considerations. These products were historically offered by Seal Science, Inc. which has now been acquired by Rubbercraft.

RCC's manufacturing capabilities include; injection molding, compression molding, close tolerance grinding, custom elastomer, fluoropolymer compounding, and molding. Rubbercraft is perfectly positioned to offer innovative solutions for industries advanced technology challenges. RCC has the formula for success.

Talk to RCC design engineers about your application:

Contact Rubbercraft: 562-354-2800 or email us at info@rubbercraft.com

Markets Served

Aerospace Chemical Processing Medical Industrial Flow Controls Scientific Laboratory Instruments Oil/Gas Exploration Semiconductor Cryogenic Fluid Control Military/Defense Alternative Energy Adhesive Dispensing Food and Beverage Bio/Pharmaceutical

Typical Applications

Aircraft controls and instruments Control valves Surgical handpieces HPLC plunger pumps Fuel regulators Flight actuators Drug delivery Blood pumps Metering pumps Fluid dispensing Cryogenic components Turbochargers Pressure switches Paint dispensing Pressure intensifiers Double acting cylinders Wafer processing Adhesive dispensing

SEAL SELECTION GUIDE

This listing shows examples of the many different families of seals available. Most series are available for industrial, AS4716, Mil-G-5514 glands, as well as o-ring grooves, and lip seal glands. There are infinite combinations of inside lip and outside lip designs, lengths of seal, spring energizers, operating parameters, materials, and performance criteria. Below is a brief overview of seal types, materials, spring energizers, and hardware design criteria. For a complete design proposal based on your application, **call 562-354-2800**

PolySpring™ - Spring-Energized Seals

Spring energized seals are uni-directional u-cups seals. An energizer is required to p pre-load for low pressure sealing and to maintain intimate lip contact with the mating hardware. As the seal wears the spring continues to exert pressure on the lip until the useful performance of the seal is exhausted. The seal is designed to have the pressure entering the "U". Seals can be used from high vacuum to over 100,000 psi (combined with the appropriately designed back-up ring).

Profile	Series	Description
	810V	General purpose, beveled lip on ID and OD. V-Spring energized to create high unit load at sealing interface which provides excellent fluid sealing.
	812V	Double nodes offer seal contact redundancy for better sealing with rough finishes. Ideal for lower friction requirements. V-Spring energized.
	814V	Excellent scraping and sealing and durability in viscous media. Excellent for adhesives, paint, powders, and food.
	836H	Designed for static or very slow speeds, vacuum, and extreme temperatures. Helical wound ribbon spring energizer.
	842 AL 842 AM 842 AH	Angled coil spring energized seal. It is ideal for low, controlled friction applications, Available with light, medium, and heavy load springs.
	High Pressure Seals	For applications above 6000 psi, we recommend consultation with seal design engineers for the best design suitable for the application. RCC provides custom designed polymer and metal backup rings.
	900V	Designed to reduce axial movement and radial shrinkage in cold applications. Excellent for reciprocating and rotary service. Designs available for all springs energizers.
	IF 1100H OF1100H	Ideal for applications with axial loads. Face seals can be designed for inside pressure (IF1100H) or outside pressure (OF1100H). Spring cavity faces highest pressure. Loaded with helical precision wound ribbon spring for high static load. Can also be designed for slow rotary service.

SEAL SELECTION GUIDE

PolyLip - Rotary Seals

Rotary Lip Seals – are designed to be retained in the housings to minimize the possibility of the seal rotating with the shaft. This is accomplished with a press fit metal can, metal retaining ring, or backing plate.

Profile	Series	Description
	SL	These low cost seals are ideal for low profile, small cross section, and small diameters. Designed for high speed and pressures less than 7 psi.
	CL	Metal canned seal designed to retrofit traditional oil seals in high speed, low pressure applications. Relies on PTFE lip memory to maintain sealing ability.
	CV	Designed for medium speeds and higher pressures. Securely mounts in the housing. Metal retainer minimizes effects of thermal cycling and prevents seal from rotating in the housing. Can be supplied with back- up ring integrated into seal (as shown).
	900AL	Flanged seal is designed to be clamped firmly in the housing to minimize the possibility of the seal rotating in the housing. Series callout shown with a light load angled coils spring.

PolyKing - Elastomer-energized Seals

This family of seals can be provided with different styles and foot prints depending on your application, Many more types are available. **Elastomer Energized Seals** - Cap Seals, T-seals and other elastomer energized seals are excellent bi-directional seals, used largely in hydraulic, fluid power, power transmission and aerospace applications.

Profile	Series	Description
	60	Cap Seals use an O-ring energizer and PTFE slipper rings for excellent bi-directional sealing. For piston and rods. Low cost solution with chemical and friction limitations.
	70	Channel Seals offer low profile industrial or o-ring gland and better support for the elastomer to minimize cold flow.
	80	T-seals incorporate back-up rings for anti-extrusion. Back-ups help compress elastomer to enhance sealing.

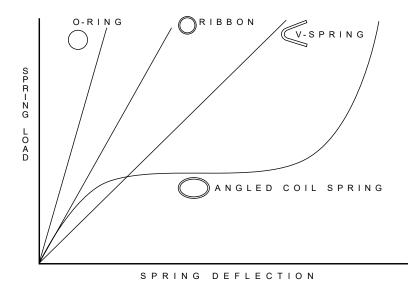


SELECTING THE PROPER SEAL

The best way to determine the best seal for the application is to contact RCC application engineering and have them review your operating conditions and design criteria.

Use Spring energized PTFE seals for:

Chemical resistance Low friction Extreme temperatures Harsh environments Lubrication free environments Long shelf life requirements Extreme tolerance applications Non lubricated applications Applications that require low compression set Diverse operating conditions



ENERGIZERS

Seal Science has four spring energizers to use depending on operating conditions.

Code	Description
V	V-spring - general duty, low cost, excellent for wiping applications
Н	Helical ribbon spring - primarily for static and vacuum service
Α	Angled coil springs - for low controllable friction
E	O-ring loaded - for low dead volume applications

Other options include, RTV filled V-spring, perfluorelastomer o-rings are available for better compatibility.

SEAL MATERIALS

The seal jackets and lips can be made from a vast selection of materials. Below are RCC standard PTFE and high performance polymers and compounds

Code	Description	Temp. Range
Т00	Virgin PTFE Use in light duty, very slow reciprocating, and static applications. Subject to high wear. Meets AMS3678/1A	-320 - 450°F
T21	Carbon filled PTFE (light) More wear resistance than T00, Can be used in lubricated High PV applications. Mating materials should be hardened above 50Rc.	-100 - 500°F
T22	Graphite filled PTFE (heavy) High performance material, with excellent wear resistance. Meets AMS3678/2	-100 - 550°F
T24	Graphite-carbon PPS filled PTFE Extremely wear resistant material with excellent creep resistance. Meets AMS3678/7	-100 - 450°F
T16	Glass-moly filled PTFE High wear resistance but can be abrasive to mating parts. Will burnish a rough surface. Meets AMS3678/3	-100 - 500°F
T12	Glass Filled PTFE Excellent in cryogenics, H _e , H ₂ and O ₂ .	-320 - 500°F
T61	Polymer filled PTFE Non-abrasive, use with soft shafts, air and vacuum applications, low out gassing and high temp capability, excellent wear resistance.	-100 - 550°F
T40	Mineral - Moly filled PTFE For long wearing - dry environments.	-100 - 500°F
W00	Clear UHMW Polyethylene Excellent wear and abrasion resistance. Best in aqueous solutions and cryogenic temperatures. Limited, temperature and PV.	-450 - 180°F
P00	Virgin PEEK Used at operating temperatures above 350°F.	-100 - 600°F

ENERGIZERS MATERIALS

Code	Туре	Standard Material	Alternatives
V	V-spring	17-4	Elgiloy
Н	Helical ribbon	301 SS	Hastelloy
Α	Angled coil	302 SS	Hastelloy, Inconel
E	O-rings	Nitrile, Viton, etc.	Perfluorolastomer

For a complete design proposal engineered for your application: info@rubbercraft.com

Factors affecting PTFE seal performance

Many factors affect seal performance. Some of the more commonly discussed factors include; pressure, temperature, and speed. Other factors include; surface finish and hardness of mating materials. Often the ultimate seal performance is compromised by economic factors. By contacting RCC design engineers early in the project and can offer suggestions to meet your target objectives for life, friction, sealing ability, and cost.

Surface Finish - PTFE wears in layers, and typically will deposit a coating on the mating surface. When the surface is rough, more wear occurs until the cr and valleys are filled with PTFE. Much less wear occurs when PTFE is sliding on PTFE–which is also a dry lubricant. PTFE will wear in direct proportion to the surface finish. For example, testing has shown that under cr conditions with a seal mated against a 16 ra finish achieves a certain life, however by mating against a 8 ra finish seal life can be doubled. Results will vary depending on pressure, temperature, and speed.

Surface finish also affects sealing ability. A rough finish creates a microscopic "line of sight" channels allowing a flow path through mating parts. When sealing gases with small molecules, such as, hydrogen, helium, or oxygen, a 2-4 Ra is highly recommended.

Fluid	Dynamic	Static
Cryogenic Gas	2-4 Ra	4-6 Ra
Gases	4-8 Ra	12-32 Ra
Viscous Fluids	12-24 Ra	16-64 Ra
Thin Fluids	6-12 Ra	16-32 Ra

In summary, a smoother finish will reduce friction, increase life, and improve sealing ability.

Dynamic Surface Hardness

When two surfaces, one hard (a metal shaft) and one soft (a seal) are in contact, there is an exchange of ions. Cross-ionization leads to adhesion, also known as sticktion. This results in higher break-out forces. A smooth mating surface will also increase the area of contact between the mating surfaces, resulting in higher break-out force. Adhesion and adhesive wear, can be overcome by increasing the hardness of the dynamic metal surface, either by changing to a harder metal or by coating/plating the mating surface.

Achieving higher hardness with platings and coatings. There are many types of material treatments; including Chrome plating, Thin Dense Chrome, Electrolyzing, Electro-less Nickel Plating, Plasma coating, Ion implantation and new thermal processing which will offer hardened surfaces. Each has an economic factor which must be balanced with performance, maintenance, and warrantee considerations compared to seal replacement costs and downtime.

Chrome Plating, for instance, though relatively inexpensive, and a common process, should never be used in rotary service or in reciprocating service under high pressure, temperatures and speeds. Chrome can fatigue and create micro-fissures and cracks that can flake off and grossly shorten seal life. Chrome is an excellent light duty, low cost plating. A hardness of Rc 62 is possible.

Thin Dense Chrome is a much better chrome plate generally used in aerospace. The process creates a micro-nodular structure that adheres better to the base material and creates a smoother, harder and more homogeneous surface. A hardness of Rc 65-68 is possible.

Electro-less Nickel Plating is an excellent process for improving bores and hard-toreach grooves. It is ideal for corrosion resistance. It can maintain the same surface finish before and after the process. A hardness of around Rc 55-58 is possible.

Hard Anodizing is a common process for aluminum coating; achieving a high hardness for excellent wear resistant parts. Performs well in salt water environments.

Plasma Spray Coating is an extremely hard Al3O2 coating. Rc 72 is obtainable for very durable surfaces.

HVOF is a thermal spray coating obtaining a Rc 70 surface hardness.

Lubrication is essential even though PTFE is a self lubricating material. By maintaining a hydrodynamic lubrication less wear occurs. Thicker fluids tend to be easier to seal and can provide ideal low wearing conditions.

Pressure X Velocity (PV) is the ultimate guide for determining seal reliability in extreme conditions. While most companies will rate the seal design to a particular pressure and speed, it is related to the combination of speed, pressure, and temperature which offers snapshots into how a seal will perform. Both pressure and velocity will generate heat. Heat is the major cause of wear. By reducing heat, friction pressure, and speed and combinations thereof seal duration will improve.

High Pressure considerations must also include hard materials, small extrusion gaps, and a hardware material selection of appropriate thickness to avoid hoop stress.

	Ro	tary	Data	Applicat	ion		
Name:				Phone:			
Company:				Fax:			
Address:				Email:			
City:				Website:			
Equipment	Туре			Service			
Application is	s used for:			Continuous Int	termittent Oscillating		
Prototyp	e 🗌 Produc	tion 🗌 Retrofit	: Other				
Arrange th	e priority by	/ numbers (1	to 5)	Speed			
Application is	s used for:			fpm cpn	n 🔄 rpm 🔄 m/s		
Friction	Cost	Compat	ibility	Temperature] °C °F °K		
Sealing	performance	Service	life	Min: Max: Operating: Maximum temperature that maximum pressure will see:			
Media					nat maximum pressure will see.		
Gas	Abrasi	ves 🗌 Liqui	d	Torque			
	rticles size:						
Viscous	i	Othe	r	Breakout: Running:			
Viscosity	CP c	St		Bore	Shaft		
Hardware	Dimensions	Inches	mm	Material	Material		
Turunuru	Dimensions	Tolerance (+/-)	Modifiable	Plating/coating	Plating/coating		
Shaft Diameter				Hardness (Rc)	Hardness (Rc)		
Bore Diameter				Surface finish (Ra)	Surface finish (Ra)		
Gland				Alignment			
Length Gland				Shaft to Bore Misalignment:			
Height				Total Indicator Runout:			
Radial				Seal Configuration			
shaft/bore				900			
clearance							

Pressure psi MPa kg/cm2 bar Min: Operating: Cycling(+/-): Max:

Reciprocating Data Application

Name:				Phone:		
Company:				Fax:		
Address:				Email:		
City:				Website:		
Equipment	Туре			Service		
Application is	s used for:			Continuous Inter	rmittent	Oscillating
Prototyp	be 🗌 Produc	tion Retrofi	t Other	Stroke Length Other		
Arrange th	ne priority by	y numbers (1	to 5)	Speed		
Application is	s used for:			fpm cpm	rpm	m/s
Friction	Cost	Compat	ibility	Temperature	°C 🗌 °F	°K
	norformance	Service	life	Min: Max:	Oper	rating:
	performance	Service	lile	Maximum temperature tha	t maximum pre	ssure will see:
Media						
Gas	Abrasi	ves 🗌 Liqui	d	Friction Force		
Solid pa	articles size:			☐ lbs ☐ N		
	3	Othe	r	Breakout:	Running:	
Viscosity	CP c	St		Bore Shaft		
Hardware	Dimension	s Inches	mm	Material	Material	
	Dimensions	Tolerance (+/-)	Modifiable	Plating/coating	Plating/coat	ing
Shaft Diameter				Hardness (Rc)	Hardness (F	२ c)
Bore Diameter				Surface finish (Ra)	Surface finis	sh (Ra)
Gland				Alignment		
Length Gland			Shaft to Bore Misalignment:			
Height						
Radial				Gland Configuration	1	
shaft/bore clearance				900V	814	836H
Pressure	psi	│MPa	n2 bar			
Min: Ma	Min: Max: Operating: Cycling(+/-):					

NOTES

562-354-2800 www.RUBBERCRAFT.com

NOTES

562-354-2800 www.RUBBERCRAFT.com

RUBBERCRAFT 3701 E CONANT ST. LONG BEACH, CA 90808 TEL: 562-354-2800 E-MAIL: info@rubbercraft.com

